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In this paper, site percolation on random �3 planar graphs is studied by Monte Carlo numerical techniques.
The method consists in randomly removing a fraction q=1− p of vertices from graphs generated by Monte
Carlo simulations, where p is the occupation probability. The resulting graphs are made of clusters of occupied
sites. By measuring several properties of their distribution, it is shown that percolation occurs for an occupation
probability above a percolation threshold pc=0.7360�5�. Moreover, critical exponents are compatible with
those analytically known for bond percolation.
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I. INTRODUCTION

Percolation on regular lattices has been extensively stud-
ied, both analytically and numerically �1�. It is now firmly
established that critical exponents, governing scaling laws
near percolation threshold, depend only on the dimension d
of the lattice. On the contrary, percolation thresholds depend
on the precise structure of the lattice. Obtaining complete
knowledge of site and bond percolation thresholds for all
regular lattices with given dimension presents a very inter-
esting challenge, from both theoretical and experimental
points of view. It is also known that an upper critical dimen-
sion dc=6 exists. This means that for dimension d�dc, all
regular lattices belong to the same universality class as a
family of regular lattices containing no loops, called Bethe
lattices. This is due to the fact that the proportion of closed
loops in a large regular lattice decreases with the dimension
d and eventually becomes negligible for large d.

On the other hand, percolation on random graphs is still
an open subject. One class of such random graphs, called
complex networks, containing scale free networks and
Erdös-Rényi networks, is at present attracting a lot of interest
in physical and mathematical communities as they are good
models for real networks �world wide web, social networks,
etc.� �2�. A crucial feature of complex networks is that closed
loops can be neglected for large graphs. Percolation theory
have been recently used to investigate their intrinsic proper-
ties �3�.

A radically different family of random graphs have been
extensively studied in the past decades as a nonperturbative
regularization of quantum gravity �see Ref. �4� for a review�.
Contrary to complex networks, they are planar, with closed
loops that cannot be neglected. Moreover, distant vertices are
strongly correlated. In some sense, these graphs are closer to
regular lattices than complex networks. More precisely, they
look locally similar to a regular lattice but are globally very
different. This intermediate situation makes the problem of
percolation on these graphs very exciting. Planar �3 random
graphs, or their dual planar dynamical triangulations, belong
to this family. They are defined in Sec. II of this paper. Their

properties are rather well established now on the ground of a
great amount of analytical and numerical results �5�. In par-
ticular, it is known that the Hausdorff dimension of these
graphs is dH=4 �6� with a fractal structure of so-called baby
universes �7�. Percolation on planar �3 random graphs is the
subject of this paper. In fact, bond percolation on planar �3

random graphs has been exactly solved as the limit q→1 of
a q-state Potts model, using matrix models �8�. In this article,
we numerically study site percolation on these graphs. The
main purpose is to measure the value of the percolation
threshold. Moreover, our work is a test of universality be-
tween site and bond percolation for this model.

II. THE MODEL

A. Random �3 planar graphs

We consider the set of all planar graphs with N trivalent
vertices, i.e., graphs without boundaries that can be drawn on
a sphere and where each vertex is linked to exactly three
neighbors. Moreover, two distinct vertices can be linked by
at most one link and no vertex can be linked to itself �see
Fig. 1�.

These graphs are purely topological objects as no length
scale is given here. Such graphs are characterized by their
Euler number �=N−Nl+Nf =2, where N, Nl, and Nf are, re-
spectively, the number of vertices, links, and faces. More-
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over, local properties of these graphs imply 2Nl=3N. How-
ever, there is no constraint on the size of a face, i.e., the
number of links surrounding a face, except that it must be
greater than three. Note that, in some cases �degenerate
graphs�, some loops contain almost all links of the graph.
This set, called �3 planar graphs, is turned into a statistical
model by assigning a Boltzmann weight to each graph. In
this paper, each graph has the same weight. The partition
function of this ensemble of random graphs is written

ZN = �
�G � �3�N

1

C�G�
,

where the sum is over all �3 graphs with N vertices as de-
fined above, and C�G� is a symmetry factor which avoids the
overcounting of some symmetric graphs �C�G� is almost al-
ways equal to one for large graphs�. The size of each face
can be seen as a random variable, with mean value equal to
6, whose distribution can be exactly calculated �9�. However,
topological constraints �planarity� imply strong correlations
between distant faces. As an example, correlations between
adjacent faces follow a modified Aboav’s law �10�. Another
important feature of these graphs is their Hausdorff dimen-
sion, which has been shown to be dH=4 �6�. It can be defined
as follows: first define a path between two vertices v1 and v2
as a succession of adjacent links connecting v1 and v2. The
length of the path is the number of links in the path and the
geodesic distance between v1 and v2 is the length of the
shortest path between them. �Nr�o, the mean number of ver-
tices whose geodesic distance from an arbitrary vertex vo is
lower than r, scales �for large r� as

�Nr�o 	 rdH.

B. Site percolation

1. Definition

We now consider the problem of site percolation on these
graphs. As usual, each site �vertex� of a graph G is randomly
occupied or empty, independently of the rest of the sites.
More precisely, each site is occupied with probability p or
empty with probability q=1− p �see Fig. 2�. Each distribu-
tion of occupied and empty sites on G induces a structure of
clusters. A cluster is a set of occupied sites connected by
links of G. The study of average properties of these clusters
as p is varied is the subject of percolation theory. Consider a
graph G� ��3�N and a distribution of occupied and empty
sites on G, denoted D �for a given occupation probability p�;
suppose that a quantity A=A�G ,D� depends on G and D.
The annealed average quantity �A��N , p� is obtained by first
averaging on all distributions D for a given graph G and,
then, by averaging on all graphs G. It can be written

�A��N,p� = �
�G � �3�N

1

C�G��D A�G,D� .

�A��N , p� can be seen as the �average� value of A on a graph
picked at random from the ��3�N ensemble.

2. Cluster distribution

For fixed p, the distribution of the sizes of clusters is
described by the quantity n�s , p�, equal to the density of clus-
ters made of s connected sites. Alternatively, one is interested
by all the moments of the distribution Kn�p�=�s�n�s , p�sn,
where the symbol �� means that only finite clusters enter
the sums. In practice, only the first moments are usually
studied. More precisely, Ko�p�=�s�n�s , p� is the total number
per site of finite clusters, K1�p�=�s�n�s , p�s is the probability
that a site belongs to any finite cluster, and S�p�
=�s�n�s , p�s2 /�s�n�s , p�s is one way to define the mean clus-
ter size.

Other interesting quantities are s1�p�, s2�p� , . . ., defined as
the sizes of the largest, second largest, …, cluster.

3. Percolation threshold

One of the most basic questions is the existence, in the
thermodynamic limit N→�, of a percolation threshold pc
such that, for p� pc, all clusters have a finite size and, for
p� pc, there exists at least one spanning cluster. This is for-
mally expressed by defining a probability R�p� that a span-
ning cluster exists, with R�p�=0 for p� pc and R�p�=1 for
p� pc. The definition of a spanning cluster is not unique but,
practically, it can be seen as a cluster connecting two oppo-
site boundaries on a lattice. Unfortunately, such a definition
does not easily apply for the family of graphs considered in
this paper, as there is no natural way to define opposite
boundaries in these graphs. However, this can be circum-
vented by defining pc as the value of p for which the sizes of
the second, third, …, largest clusters reach a maximum �11�.
This property can be understood with the following heuristic
argument: for p� pc, all graphs contain several finite clusters
with comparable size, as soon as p is not too close to pc. As
p is growing, the sizes of the largest, second largest, third
largest, …, clusters are growing until pc is reached. At this
point, most of the clusters merge into a giant component so
that, for p� pc, the sizes of the second, third, …, largest
clusters dramatically fall down.

4. Critical exponents

There is a profound analogy between percolation and
critical phenomena, where pc plays the role of the critical

FIG. 2. Occupied �black bullets� and empty sites on a �3 graph.
Dashed links connect empty sites to occupied or empty sites.
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temperature. The analog of the order parameter is the density
of the spanning cluster, denoted P�p�. It represents the prob-
ability for a site to belong to the spanning cluster. It can be
defined as P�p�= p−�s�n�s , p�s since p is the probability for
a site to belong to a cluster �finite or not� and �s�n�s , p�s is
the probability for a site to belong to a finite cluster. For p
� pc, all clusters are finite and P�p�=0. For p� pc, P�p�
increases with p and 0�P�p�	1. However, for planar �3

random graphs, the notion of spanning cluster is not appro-
priate, and P�p� is defined as the density of the largest clus-
ter. At least for p	 pc and large graphs, both definitions are
expected to coincide.

As in critical phenomena, it is possible to define a corre-
lation length 
�p� related to the mean radius of clusters and
diverging at p= pc as 
�p�	�p− pc�−�. Moreover, most ob-
servables are expected to follow scaling laws in the region
p	 pc. We define standard exponents � ,
, and � associated
with Ko�p�, P�p�, S�p� in the critical region by

Ko�p� 	 �p − pc�2−�,

P�p� 	 �p − pc�
,

S�p� 	 �p − pc�−�,

and, at p= pc, n�s�=n�s , pc� is expected to scale with an ex-
ponent � as

n�s� 	 s−�.

These exponents are expected to follow the scaling relations

2 − � = � + 2
 = d� ,

� = 2 +



d� − 

. �1�

Here, d is a parameter characteristic of the model. For
regular D-dimensional lattices with D	6, d=D is the stan-
dard dimension of the lattice. For D�6, i.e., above the upper
critical dimension d=6. For planar �3 random graphs, d
=dH=4, the Hausdorff dimension defined above. The sizes of
the largest, second largest, …, clusters follow a scaling law
�11�

s1 	 �p − pc�
−�d,

s2 	 �p − pc�
−�d, . . . .

5. Theoretical values of critical exponents
for bond percolation

Percolation could be defined by an occupation probability
on the links of the planar �3 random graphs. This would give
rise to bond percolation. As in critical phenomena, critical
exponents are expected to be universal whereas pc should
depend on the details of the model. So, critical exponents
should be the same in bond and site percolation. Bond per-
colation on planar �3 random graphs has been exactly solved
using a random matrix model formulation �8�, so that expo-

nents �, �, 
, �, and � are exactly known in this case �12�:

� = 1, � = − 2, 
 =
1

2
, � = 3, � =

15

7
.

If universality holds, critical exponents for site percolation
should also be given by these values.

III. THE NUMERICAL EXPERIMENT

A. The method

1. Nodes removal

The first task is to generate graphs in ��3�N. We start from
a tetrahedron. Then, one face �triangle� is randomly chosen, a
vertex is added inside this face and linked to the three verti-
ces of the triangle. This procedure is repeated until a poly-
hedron with N faces �triangles� is obtained. This polyhedron
is transformed into a �3 graph by duality, i.e., each face
�triangle� of the polyhedron is replaced by a vertex linked to
three vertices associated to the three adjacent faces of the
triangle. The graph G�o� thus obtained contains N trivalent
vertices and has the topology of a sphere. Then, starting from
G�o�, all graphs in ��3�N can be generated by using standard
flips of links called T2 moves �4�.

Once a graph G� ��3�N has been obtained, one distribu-
tion D�G , p� of occupied and empty sites is randomly gen-
erated. This is achieved by randomly removing qN vertices
from G, with q=1− p. The pN remaining vertices are defined
as occupied vertices on G. Then, interesting quantities are
measured. Several distributions are generated this way to ob-
tain average properties on G for fixed p. Then, another graph
is generated by a series of T2 moves and the removal proce-
dure is applied to this new graph, etc. Annealed averages of
observables are thus computed.

2. Cluster construction and measured quantities

For each distribution D�G , p� on a given graph G, all
clusters are constructed using a breadth-first search algorithm
analog to Wolff algorithm �13�. At step n−1 of the algorithm,
suppose n−1 clusters c1 ,c2 , . . . ,cn−1 have already been con-
structed. All corresponding occupied sites are labeled “vis-
ited.” Step n first consists in choosing an occupied site not
yet visited. This site vo is the root of the cluster cn and is now
labeled “visited.” It is put in a �empty� list Q. The following
procedure is now applied to Q: for each site v in Q, all
occupied and not yet visited neighbors of v on G are added
to cn, labeled “visited” and put in Q whereas v is removed
from Q. This procedure is repeated until Q becomes empty.
The cluster cn is thus completely constructed. The algorithm
stops when all occupied vertices have been visited.

The size of each cluster—i.e., the number of sites in the
cluster—is registered and a histogram of the sizes is built.
This allows us to measure the following quantities: Ko�p�,
the total number of clusters �except the largest one�; n�s , p�,
the density of clusters of size s; P�p�, the size of the largest
cluster divided by N; for large N, this is expected to represent
the order parameter defined above; s2�p�, the size of the sec-
ond largest cluster; K2�p�, the second moment of n�s , p�; in
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the critical region, K2�p� is expected to scale like S�p�
=K2�p� /K1�p�, the mean �finite� cluster size.

3. Finite size scaling

An important tool when using numerical simulations is
the finite size scaling analysis. It is based on the hypothesis
that, for finite systems, scaling laws are corrected by scaling
functions depending on the ratio between the linear size L of
the system and the correlation length 
. More precisely, for
L�
, the system should not feel finite size effects, but when
the correlation length becomes of order L, finite size should
modify scaling laws. For a quantity O, a scaling law O
	�p− pc�−z �for infinite size of the system� can be rewritten
O	
z/� as the correlation length itself scales as 
	�p
− pc�−�. Then, when 
	L, O	Lz/�. This can be summarized
by O	Lz/�F��p− pc�L1/��, where F�x� is a �scaling� function
of the dimensionless ratio x= �p− pc�L1/�	�L /
�1/� such that
F�x�→1 for x	1 and F�x�→x−z for x�1.

Finite size scaling laws enable one to extract the values of
critical exponents by studying the behavior of quantities as
the size of the system is varied. This also defines a finite size
percolation threshold: suppose that the scaling function for O
reaches a maximum for x=xo. Then, for fixed L, the value of
p for which O reaches a maximum is given by �p− pc�L1/�

=xo. This defines an effective finite size percolation threshold
pc�L� approaching pc when L→� as pc�L�− pc	L−1/� �1�.

For percolation on graphs in ��3�N, there is no explicit
linear size as graphs are purely topological. However, the
quantity N1/dH, where dH is the Hausdorff dimension, defines

an effective linear size, so that finite size scaling can be
written O	Lz/�F��p− pc�N1/�dH�. The effective finite size
percolation threshold pc�N� then approaches pc as pc�N�
− pc	N−1/�dH.

B. Simulations

We simulated graphs of sizes ranging from N=400 to N
=25 600 or 51 200 �according to the measured quantity� ver-
tices. When measuring P�p� and s2�p�, we considered vari-
ous values of p for each size. For each graph G and given p,
we generated nD=128 to 1024 occupation distributions by
the nodes removal method. nD was chosen big enough to
minimize its influence on annealed averages. Each simula-
tion consisted in generating nG graphs in ��3�N, with nG
ranging from 1024 to 4096 for each value of p. Each graph
was obtained from the previous one by performing 2000 Nl
flips �T2 moves�. We estimated error bars by standard jack-
knife method. Error bars are always plotted on the figures
below but, most of the time, they are hidden by the symbols.

C. The results

1. Order parameter

The percolation order parameter P plotted as a function of
p is shown in Fig. 3, for various values of N. We see that, for
low values of occupation probability p, P is close to zero. As
expected, P=1 for p=1 since all graphs are connected when
no vertex is removed. According to percolation theory, P is
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FIG. 3. Order parameter P vs p.
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not zero only in the percolating phase. As can be seen on the
figure, in our model, a percolation transition is expected to
take place for p
0.7. However, it is not possible to get a
precise estimate of the threshold value pc with these data.

2. Percolation threshold pc

The percolation threshold pc is determined using the be-
havior of s2, the size of the second largest cluster. Figure 4
clearly shows a peak of s2 for a value depending on N, de-
noted pc�N�. This effective percolation threshold pc�N� was
extracted by fitting the peaks of s2 with quadratic functions.
The result is plotted in Fig. 5. As explained above, by using
finite size scaling hypothesis, pc�N� is expected to approach
pc for large N according to

pc�N� = pc + c1N−1/�dH, �2�

where c1 is a constant. So, we fitted pc�N� with the scaling
law �2� and we obtained pc=0.7360�5�.

3. Critical exponents

Exponent �: The fit of pc�N� with the scaling law �2�
allowed us to extract the value of 1 /�dH also. We obtained
1 /�dH=0.489�9�. As can be seen in Fig. 6, pc�N� is clearly a
straight line when plotted as a function of N−0.489.

Exponent 
: We also used s2 to extract 
 /�dH: Fig. 4
shows that the peaks of s2 are growing with the size N. By
fitting the peaks of s2 with quadratic functions, we obtained
the value of s2 at the maximum, denoted at s2

max�N�. Figure 7

shows the results.
By finite size scaling arguments, s2 is expected to behave

as

s2 	 N1−
/�dHF��p − pc�N1/�dH�

so that s2
max�N� scales as

s2
max 	 N1−
/�dH. �3�

By fitting s2
max�N� with the scaling form �3�, we obtained 1

−
 /�dH=0.880�1�. The best fit is plotted in Fig. 7.
Exponent �: We measured the number of clusters of size s

at p= pc=0.7360. In order to extract the value of �, we did
not use finite size scaling analysis. Instead, we used the scal-
ing law �for s�1�

n�s� 	 s−� �4�

for one value of N large enough to minimize finite size ef-
fects. We chose N=51 200 and discarded data with s�100
and s�7000 �because the scaling form is valid for s�1 and
there was not enough statistic beyond s=7000�. Then, we
fitted the data with the scaling form �4�. We obtained �
=2.0�1�. The result is shown in Fig. 8.

Exponent �: We extracted the value of � by using finite
size scaling analysis applied to the density of total number of
clusters Ko�p� measured at p= pc �Fig. 9�. The expected scal-
ing law is
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FIG. 8. Number of clusters of size s �not normalized� for p
= pc and N=51 200. The straight line is the best fit.
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Ko�N,pc� 	 N��−2�/�dH. �5�

We fitted data with �5� and obtained ��−2� /�dH=−0.7�2�.
The result is plotted in Fig. 9

Exponent �: We measured K2�p�, the second moment of
the distribution n�s , p� for p= pc. Figure 10 shows the result.
As mentioned above, K2�p� is expected to scale as S�p�, the
mean size of finite clusters, at least in the critical region.
Finite size scaling law for K2�p� is then

K2�N,pc� 	 N�/�dH. �6�

We extracted � by fitting data with Eq. �6� and we obtained
� /�dH=0.67�3�.

4. Remark on the results

The determination of the percolation threshold using the
maximum of the second largest cluster gives rather accurate
value for pc. This is partly due to the fact that the parameter
pc in the scaling law �2� is independent of the precise ap-
proach of pc�N� to its infinite size limit.

The situation is rather different for the determination of
critical exponents. In Table I, measured and theoretical val-
ues of critical exponents considered in this paper are sum-
marized. In addition, combinations entering scaling relations
�1� are given in Table II. As can be seen, the value of 1 /�dH
obtained by simulations is not compatible with the theoreti-
cal value 1 /4. In fact, it is well known that the Hausdorff
dimension of planar �3 random graphs is very sensitive to
finite size effects and can be extracted only for large lattices
using sophisticated scaling variables in finite size scaling
analysis �14�. However, this does not mean that simulations
are unable to take account of the fractal structure of these
graphs. The remaining critical exponents are compatible
�
 /�dH ,�� or marginally compatible ���−2� /�dH, � /�dH�
with the theoretical values. However, error bars take into
account neither the error on 1 /�dH nor the uncertainty in
determining pc. Moreover, logarithmic corrections to scaling

should be considered to obtain accurate values of the expo-
nents.

IV. CONCLUSION

The first important fact is to notice that critical exponents
and scaling relations obtained by simulations are globally
compatible with the expected theoretical values calculated
for bond percolation. This gives confidence in the extraction
of the �unknown� site percolation threshold. This also con-
firms universality between site and bond percolation for this
model.

However, the main result of this paper is the value pc
=0.7360�5� for site percolation on planar �3 random graphs.
It is greater but not very far from the threshold value for site
percolation on the honeycomb lattice pc�honeycomb�
=0.6962, . . ., which is the simplest regular trivalent lattice.
On one hand, this means that, to some extent, planar �3

random graphs and honeycomb lattices look alike: more pre-
cisely, they locally look alike. In contrast, trivalent Bethe
lattices are neither locally equivalent to honeycomb nor to
planar �3 random graphs, so that their percolation thresholds
are very different, pc�3−Bethe lattice�=1 /2. On the other
hand, as pc is greater for planar �3 random graphs than hon-
eycomb lattices, percolation is easier on a pure hexagonal
lattice than on the planar �3 random graphs. The reason is
that on these latter graphs, there are regions called baby uni-
verses �BUs� connected to the rest of the graph by very small
boundaries called necks �7�. Moreover, BUs can grow on
other BUs, giving a fractal �self-similar� structure to the
graph. So, for a given occupation probability p, the probabil-
ity that a given BU belongs to a giant connected cluster is
proportional to the probability that at least one vertex of its
boundaries is occupied. This is small compared with the
probability that, on a pure honeycomb lattice, a given region
is a part of a giant cluster. This fractal structure of BU is also
the main feature that makes honeycomb lattice and planar �3

random graphs globally different at long distance, so that
their critical exponent are different.

It would be interesting to study in more details the con-
nections between baby universes and percolation transition.
In particular, a nonuniform occupation probability, depend-
ing, for instance, on the local curvature or on the structure of
BU, could shed light on this problem. The role of BUs could
also be studied by real-space renormalization group analysis.
As mentioned above, planar �3 random graphs have a hier-
archical structure that makes them look similar to trees of
baby universes. It is possible to use this self-similarity of
planar �3 random graphs with respect to BUs to perform a
real-space renormalization group transformation �15� by re-
placing each baby universe of the last generation �i.e., a BU
with no further BUs growing on it� by one supersite �1�.

TABLE I. Theoretical and measured values of critical exponents.

Exponent 1 /�dH ��−2� /�dH 
 /�dH � /�dH �

Simulation 0.489�9� −0.7�2� 0.120�1� 0.67�3� 2.0�1�
Theory 0.25 −1 0.125 0.75 15 /7

TABLE II. Test of scaling relations between critical
exponents.

Combination ��+2
� /�dH 2+

 /�dH

1−
 /�dH

Simulation 0.91�3� 2.136�1�
Theory 1 15

7
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Then, if the corresponding last generation BU �including its
boundary� contained a spanning cluster, the supersite is oc-
cupied. This defines an occupation probability p� for the su-
persite as a �complicated� function of p, the occupation prob-
ability of the original graph.

It should also be noticed that the value of pc found here is
comparable with high values found on Archimedean lattices
�16�. It would be interesting to understand if planar �3 ran-
dom graphs share common local characteristics with
Archimedean lattices.
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